WASHINGTON: Scientists have developed a new light-weight, conductive material which can convert body heat into electricity, and lead to T-shirts or arm bands that generate power for wearable electronics.
The prototypes, developed by researchers at North Carolina State University in the US, are lightweight, conform to the shape of the body, and can generate far more electricity than previous lightweight heat harvesting technologies.
The researchers also identified the optimal site on the body for heat harvesting.
“Wearable thermoelectric generators (TEGs) generate electricity by making use of the temperature differential between your body and the ambient air,” said Daryoosh Vashaee, associate professor at NC State.
“Previous approaches either made use of heat sinks – which are heavy, stiff and bulky – or were able to generate only one microwatt or less of power per square centimetre,” Vashaee said.
“Our technology generates up to 20 microwatt per square centimetre and doesn’t use a heat sink, making it lighter and much more comfortable,” he said.
The new design begins with a layer of thermally conductive material that rests on the skin and spreads out the heat.
The conductive material is topped with a polymer layer that prevents the heat from dissipating through to the outside air. This forces the body heat to pass through a centrally-located TEG that is one square centimetre.
Heat that is not converted into electricity passes through the TEG into an outer layer of thermally conductive material, which rapidly dissipates the heat. The entire system is thin – only 2 millimetres – and flexible.
“In this prototype, the TEG is only one square centimetre, but we can easily make it larger, depending on a device’s power needs,” said Vashaee.
The researchers also found that the upper arm was the optimal location for heat harvesting.
While the skin temperature is higher around the wrist, the irregular contour of the wrist limited the surface area of contact between the TEG band and the skin.
Meanwhile, wearing the band on the chest limited air flow – limiting heat dissipation – since the chest is normally covered by a shirt.
In addition, the researchers incorporated the TEG into T-shirts. They found that the T-shirt TEGs were still capable of generating 6 microwatt per square centimetre – or as much as 16 microwatt per square centimetre if a person is running.
“T-shirt TEGs are certainly viable for powering wearable technologies, but they’re just not as efficient as the upper arm bands,” Vashaee said.
“The goal of ASSIST is to make wearable technologies that can be used for long-term health monitoring, such as devices that track heart health or monitor physical and environmental variables to predict and prevent asthma attacks,” he said.
“To do that, we want to make devices that don’t rely on batteries,” he added. (AGENCIES)